Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Heterostructures in GaInP grown using a change in Te doping

Identifieur interne : 011F61 ( Main/Repository ); précédent : 011F60; suivant : 011F62

Heterostructures in GaInP grown using a change in Te doping

Auteurs : RBID : Pascal:00-0206847

Descripteurs français

English descriptors

Abstract

In organometallic vapor phase epitaxy, changes in growth conditions can be used to modulate the extent of CuPt ordering and, hence, the band gap energy of GaInP. One method is to add Te during growth. An increase in the band gap energy of 0.1 eV due to a decrease in ordering has been obtained by increasing the input pressure of diethyltelluride from 0 to 8×10-6Torr, which corresponds to a doping concentration of 6×1017cm-3. This simple procedure offers an attractive method to grow quantum wells (QWs) and superlattices, which are useful for band gap engineering, by modulating the input pressure of the Te precursor. Various heterostructures with abrupt interfaces were successfully grown with interruptions at the interfaces between the Te-doped and undoped GaInP layers. QWs as thin as 10 nm can be clearly seen from transmission electron microscope images. © 2000 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:00-0206847

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Heterostructures in GaInP grown using a change in Te doping</title>
<author>
<name sortKey="Hsu, Y" uniqKey="Hsu Y">Y. Hsu</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>College of Engineering, 1495 E. 100 S., University of Utah, Salt Lake City, Utah 84112</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Utah</region>
</placeName>
<wicri:cityArea>College of Engineering, 1495 E. 100 S., University of Utah, Salt Lake City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Fetzer, C M" uniqKey="Fetzer C">C. M. Fetzer</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>College of Engineering, 1495 E. 100 S., University of Utah, Salt Lake City, Utah 84112</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Utah</region>
</placeName>
<wicri:cityArea>College of Engineering, 1495 E. 100 S., University of Utah, Salt Lake City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Stringfellow, G B" uniqKey="Stringfellow G">G. B. Stringfellow</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>College of Engineering, 1495 E. 100 S., University of Utah, Salt Lake City, Utah 84112</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Utah</region>
</placeName>
<wicri:cityArea>College of Engineering, 1495 E. 100 S., University of Utah, Salt Lake City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shurtleff, J K" uniqKey="Shurtleff J">J. K. Shurtleff</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>College of Engineering, 1495 E. 100 S., University of Utah, Salt Lake City, Utah 84112</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Utah</region>
</placeName>
<wicri:cityArea>College of Engineering, 1495 E. 100 S., University of Utah, Salt Lake City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Choi, C J" uniqKey="Choi C">C. J. Choi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, Kwangju 506-712, Korea</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, Kwangju 506-712</wicri:regionArea>
<wicri:noRegion>Kwangju 506-712</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seong, T Y" uniqKey="Seong T">T. Y. Seong</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, Kwangju 506-712, Korea</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, Kwangju 506-712</wicri:regionArea>
<wicri:noRegion>Kwangju 506-712</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">00-0206847</idno>
<date when="2000-06-01">2000-06-01</date>
<idno type="stanalyst">PASCAL 00-0206847 AIP</idno>
<idno type="RBID">Pascal:00-0206847</idno>
<idno type="wicri:Area/Main/Corpus">013439</idno>
<idno type="wicri:Area/Main/Repository">011F61</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Doped materials</term>
<term>Energy gap</term>
<term>Experimental study</term>
<term>Gallium compounds</term>
<term>Gallium phosphides</term>
<term>Heterojunctions</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Indium phosphides</term>
<term>MOCVD</term>
<term>Semiconductor doping</term>
<term>Semiconductor epitaxial layers</term>
<term>Semiconductor growth</term>
<term>Semiconductor heterojunctions</term>
<term>Superlattices</term>
<term>TEM</term>
<term>Tellurium</term>
<term>Tellurium additions</term>
<term>VPE</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>8105E</term>
<term>8115K</term>
<term>6172V</term>
<term>6855L</term>
<term>Etude expérimentale</term>
<term>Superréseau</term>
<term>Matériau dopé</term>
<term>Gallium phosphure</term>
<term>Indium phosphure</term>
<term>Addition tellure</term>
<term>Epitaxie phase vapeur</term>
<term>Bande interdite</term>
<term>Hétérojonction</term>
<term>TEM</term>
<term>Gallium composé</term>
<term>Indium composé</term>
<term>Semiconducteur III-V</term>
<term>Tellure</term>
<term>Couche épitaxique semiconductrice</term>
<term>Méthode MOCVD</term>
<term>Croissance semiconducteur</term>
<term>Hétérojonction semiconducteur</term>
<term>Dopage semiconducteur</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In organometallic vapor phase epitaxy, changes in growth conditions can be used to modulate the extent of CuPt ordering and, hence, the band gap energy of GaInP. One method is to add Te during growth. An increase in the band gap energy of 0.1 eV due to a decrease in ordering has been obtained by increasing the input pressure of diethyltelluride from 0 to 8×10
<sup>-6</sup>
Torr, which corresponds to a doping concentration of 6×10
<sup>17</sup>
cm
<sup>-3</sup>
. This simple procedure offers an attractive method to grow quantum wells (QWs) and superlattices, which are useful for band gap engineering, by modulating the input pressure of the Te precursor. Various heterostructures with abrupt interfaces were successfully grown with interruptions at the interfaces between the Te-doped and undoped GaInP layers. QWs as thin as 10 nm can be clearly seen from transmission electron microscope images. © 2000 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>87</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Heterostructures in GaInP grown using a change in Te doping</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HSU (Y.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FETZER (C. M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>STRINGFELLOW (G. B.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SHURTLEFF (J. K.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>CHOI (C. J.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SEONG (T. Y.)</s1>
</fA11>
<fA14 i1="01">
<s1>College of Engineering, 1495 E. 100 S., University of Utah, Salt Lake City, Utah 84112</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, Kwangju 506-712, Korea</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>7776-7781</s1>
</fA20>
<fA21>
<s1>2000-06-01</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2000 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>00-0206847</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In organometallic vapor phase epitaxy, changes in growth conditions can be used to modulate the extent of CuPt ordering and, hence, the band gap energy of GaInP. One method is to add Te during growth. An increase in the band gap energy of 0.1 eV due to a decrease in ordering has been obtained by increasing the input pressure of diethyltelluride from 0 to 8×10
<sup>-6</sup>
Torr, which corresponds to a doping concentration of 6×10
<sup>17</sup>
cm
<sup>-3</sup>
. This simple procedure offers an attractive method to grow quantum wells (QWs) and superlattices, which are useful for band gap engineering, by modulating the input pressure of the Te precursor. Various heterostructures with abrupt interfaces were successfully grown with interruptions at the interfaces between the Te-doped and undoped GaInP layers. QWs as thin as 10 nm can be clearly seen from transmission electron microscope images. © 2000 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15K</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60A72V</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60H55L</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>8105E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>8115K</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>6172V</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>6855L</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Superréseau</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Superlattices</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Matériau dopé</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Doped materials</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Gallium phosphure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Gallium phosphides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Indium phosphure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Indium phosphides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Addition tellure</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Tellurium additions</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Epitaxie phase vapeur</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>VPE</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Bande interdite</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Energy gap</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Hétérojonction</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Heterojunctions</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>TEM</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>TEM</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Tellure</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Tellurium</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Couche épitaxique semiconductrice</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Semiconductor epitaxial layers</s0>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Méthode MOCVD</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>MOCVD</s0>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Croissance semiconducteur</s0>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Semiconductor growth</s0>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Hétérojonction semiconducteur</s0>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Semiconductor heterojunctions</s0>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Dopage semiconducteur</s0>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Semiconductor doping</s0>
</fC03>
<fN21>
<s1>143</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0020M000130</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 011F61 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 011F61 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:00-0206847
   |texte=   Heterostructures in GaInP grown using a change in Te doping
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024